Maintenance of Digestive Performance in the Turtles *Chelydra serpentina*, *Sterna therus odoratus*, and *Trachemys scripta*

STEPHEN M. SECOR AND JARED DIAMOND

In our continued investigation of the adaptive interplay between feeding ecology and digestive physiology, we measured postfeeding responses of juvenile *Chelydra serpentina*, adult *Sterna therus odoratus*, and subadult *Trachemys scripta*, three aquatic turtle species that feed at frequent intervals and consume a catholic diet of plants and animals. In this study, we measured O₂ consumption rates from fasting and digesting individuals and compared intestinal nutrient uptake rates and organ masses of turtles fasted for one month with turtles sacrificed one day after the ingestion of a meal equivalent to 5–11% of body mass. O₂ consumption during digestion peaked at rates 3.4, 2.1, and 2.7 times fasting values, respectively, for *C. serpentina*, *S. odoratus*, and *T. scripta*—factors much smaller than those documented previously for reptile species that normally consume large meals at long intervals. None of the turtle species experienced significant postfeeding changes in intestinal uptake of amino acids or D-glucose. Ratios of amino acid uptake rates to D-glucose uptake rates were much greater than 1.0 for each species, either fasted or fed, a finding characteristic of other carnivores as well. Total intestinal capacity to transport the amino acids L-leucine and L-proline and the sugar D-glucose did not change with feeding for any of the turtle species. None of the species experienced significant differences in intestinal mass or enterocyte morphology between fasted and fed individuals. *Chelydra serpentina* and *T. scripta* experienced no significant postfeeding changes in organ masses, and the only changes for *S. odoratus* were 59% and 42% increases in stomach wet and dry masses, respectively, upon feeding. Thus, juvenile *C. serpentina*, adult *S. odoratus*, and subadult *T. scripta* maintain the functional and morphological integrity of their guts during fasting and exhibit only modest metabolic responses to feeding. We hypothesize that these are adaptive traits characteristic of species that frequently consume and digest small meals.

FEEDING habits, including diet composition, meal size, and meal frequency, have had profound effects on the evolved characteristics of the digestive system. For example, the small intestines of herbivores transport simple sugars at much faster rates than they transport amino acids, whereas the opposite trend occurs for carnivores (Karasov and Diamond, 1988). Recently, it has been discovered for Burmese pythons (*Python molurus*) that larger meals elicit greater activities of intestinal nutrient transporters and larger metabolic responses (Secor and Diamond, 1997a, 1997b).

Meal frequency in the wild, at least for snakes, is correlated with the magnitudes of functional and morphological responses of the gut to ingestion of food (Secor and Diamond, 1994; Secor et al., 1994; Secor and Diamond, 1995). We have found, for several snake species that feed relatively frequently in the wild, that changes in gut performance after feeding are modest or nonexistent (Secor and Diamond, 1994). That is, after completing digestion, they maintain the functional capacities of their guts, an appropriate response because their next meal is likely to arrive soon (Secor and Diamond, 1994). In contrast, species of snakes that feed relatively infrequently in the wild up- and down-regulate intestinal function and morphology with the initiation and completion of digestion (Secor et al., 1994; Secor and Diamond, 1995). For these snakes, the down-regulation of gut performance that occurs with the completion of digestion serves to conserve energy during the usually long fasting periods between meals. Hence rapid up-regulation of gut performance upon feeding is necessary for successful digestion.

We hypothesize that these adaptive scenarios linking feeding frequency and the regulation of digestive performance apply to other taxa as well. In support, we have preliminary evidence that anuran species, which estivate and fast for months during the dry season, regulate gut performance as do infrequently feeding snakes, whereas frequently feeding anuran species maintain intestinal function for weeks after digestion has completed (Secor and Diamond, 1996; unpubl. obs.). To test the generality of our adaptive hypothesis regarding digestive responses requires the study of other taxa besides...
snakes and anurans. Turtles afford a good starting point. The vast majority of aquatic turtle species are omnivorous opportunists in their feeding habits, feeding frequently on both plant and animal matter (Ernst and Barbour, 1989; Ernst et al., 1994). We would therefore predict that aquatic turtles, like frequently feeding snakes and anurans, maintain intestinal functional integrity even after an extended fasting bout.

We tested this prediction by examining the metabolic, functional, and morphologic responses to feeding of juvenile snapping turtles (*Chelydra serpentina*; family Chelydridae), adult common musk turtles (*Sternotherus odoratus*; family Kinosternonidae), and subadult red-eared sliders (*Trachemys scripta*; family Emydidae). We selected these three turtles because they feed frequently in the wild (Punzo, 1975; Ernst, 1986; Ernst et al., 1994) and because they represent three separate turtle families. The primary objective of our study was to compare O₂ consumption rates, intestinal nutrient uptake rates, and intestinal and organ morphology between fasted and digesting turtles. Our second objective was to compare the results from these three turtle species with measurements taken from other taxa to evaluate the generality of our adaptive hypothesis about digestive responses.

MATERIALS AND METHODS

Animals and maintenance.— *Chelydra serpentina*, *S. odoratus*, and *T. scripta* exist in many types of aquatic habitats throughout the eastern and central United States, with the former two species ranging into southern Canada. These turtle species as juveniles and adults possess a very catholic diet, feeding opportunistically on vertebrates, invertebrates, carrion, and plants (Ernst et al., 1994). *Chelydra serpentina*, one of the largest species of freshwater turtles (carapace length and body mass up to 49 cm and 34 kg, respectively), actively forages when young but as adults will often lie in ambush to seize prey (Ernst et al., 1994). *Trachemys scripta* is a medium-sized turtle (maximum carapace length and body mass of 28 cm and 4 kg, respectively) that forages during the day in shallow water for aquatic plants and small animals (Ernst et al., 1994). The smaller *S. odoratus* (maximum carapace length and body mass 14 cm and 200 g, respectively) actively forages on the bottom, searching and seizing invertebrates, small vertebrates, and vegetation (Ernst et al., 1994).

Turtles used in this study were obtained from several sources: four *C. serpentina* and three *S. odoratus* were provided by the Savannah River Ecology Laboratory (Aiken, SC); and two *C. serpentina*, four *S. odoratus*, and all *T. scripta* were purchased commercially. We housed turtles individually in plastic containers (37 × 25 × 14 cm) half-filled with water at 25–30°C under a light:dark photoperiod of 14:10 h. Turtles were fed small pieces of beef and fish (sprinkled with calcium and vitamin powder) twice each week.

Prior to experiments, turtles were fasted for one month to ensure that they were postabsorptive and to allow ample time for any potential down-regulation of gut performance. When turtles were fed, each was allowed to consume small pieces of beef (≈1 g) until satiety. We conducted two sets of experiments. First, we measured postfeeding metabolic response (O₂ consumption) from three *C. serpentina* (mean mass ± 1 SE = 101 ± 6 g), four *S. odoratus* (61 ± 6 g), and four *T. scripta* (356 ± 72 g) that had consumed meals equaling 11.3 ± 1.6%, 5.0 ± 0.5%, and 5.2 ± 0.4% of their body mass, respectively. Second, we used six *C. serpentina* (79 ± 13 g), seven *S. odoratus* (65 ± 2 g), and six *T. scripta* (325 ± 52 g) to document functional and morphological responses following feeding. For each species, we measured intestinal nutrient uptake, intestinal mass and morphology, and the mass of other organs from three or four (S. odoratus only) individuals killed following the 30-day fast and from three others killed one day after feeding. For these measurements, meal sizes equalled 10.0 ± 2.0%, 5.5 ± 0.7%, and 5.9 ± 1.2% of body mass for *C. serpentina*, *S. odoratus*, and *T. scripta*, respectively.

Metabolic response.— We used closed-system respirometry [methods described in Vleck (1987) and Secor et al. (1994)] to measure aerial oxygen consumption rates (V̇O₂ in units of mL O₂ · g⁻¹ · h⁻¹) of turtles at 30°C prior to and after feeding. Fasted turtles were placed on moist towels (to reduce desiccation) in individual respirometry chambers (0.5–1.5 L) for two days prior to measurements to accustom them to the chambers. We then measured each turtle's V̇O₂ (corrected for standard temperature and pressure) at 12- to 24-h intervals (at 0600 and 1800 PST) for four days prior to and up to eight days following feeding. At three-day intervals, turtles were returned to their water-filled chambers for several hours to rehydrate.

Nutrient uptake measurements.— We measured rates of nutrient uptake across the intestinal brush-border membrane of the small and large intestine (for details of methodology, see Karasov and Diamond (1983) and Secor et al.
(1994). Briefly, after severing their spinal cord just posterior to the skull, the plastron was removed, and the intestine excised, rinsed in ice-cold Ringer's solution, everted, and sectioned into 1-cm sleeves. Everted sleeves were mounted on grooved metal rods and preincubated for 5 min in Ringer's solution at 30°C and then incubated for 2 min at 30°C in Ringer's solution containing a radiolabeled nutrient and an adherent fluid marker labeled with a different radiisotope. We measured intestinal uptake rates of the amino acids L-leucine, L-lysine, and L-proline (each at a concentration of 50 mM and labeled with 3H) and carrier-mediated transport of the sugar D-glucose (at 20 mM and labeled with 14C). To correct for labeled nutrients adherent to the tissue surface, we used polyethylene glycol (labeled with 14C) for the amino acids, and L-glucose (labeled with 3H, thereby also correcting for passive D-glucose uptake) for D-glucose. In each species, we measured uptake rates (expressed as nmol/min⁻¹·mg⁻¹ of sleeve wet mass) of L-leucine, L-proline, and D-glucose from each of the three regions (proximal, middle, and distal thirds) of the small intestine. In addition, for C. serpentina and S. odoratus, uptake rates of L-lysine were measured from the proximal and middle small intestinal regions, and uptake rates of L-proline and D-glucose were measured from the large intestine. As a comparative index of intestinal adaptation to natural meal composition (Karasov and Diamond, 1988), we calculated ratios of amino acid uptake to D-glucose uptake. As described previously in Secor (1995), we derived the total uptake capacity (µmol/min) of the whole length of the small intestine for L-leucine, L-proline, and D-glucose by summing the uptake capacities of each intestinal region [a product of uptake rate (nmol·min⁻¹·mg⁻¹) times mass (mg)].

Morphological response.—We measured the wet mass of the total small intestine and calculated total intestinal dry mass and wet and dry masses of the mucosal and serosal layers. Our calculations were made from I-cm segments from the proximal, middle, and distal regions: we scraped the mucosal layer from the serosa, weighed the wet masses of these samples, dried them to a constant mass (at 60°C), and reweighed them. For fasted and fed C. serpentina and S. odoratus, we also used light microscopy to measured, from formalin-fixed and paraffin-embedded intestinal tissues, the height and diameter of five enterocytes. We used these measurements to calculate enterocyte volume using the formula for a cylinder [πr²dh]. Because postfeeding mass changes have been observed for organs other than the small intestine in other species (Toloza et al., 1991; Secor and Diamond, 1995), we measured the wet and dry masses of the heart, paired lungs, liver, stomach, pancreas, large intestine, and paired kidneys from fasted and fed individuals of the three turtle species.

Statistical analysis.—We used a repeated-measures analysis of variance (ANOVA) to test for significant effects of sampling time on VO₂ and of intestinal position on nutrient uptake rates (Zar, 1974). In conjunction with each of these tests, we used a priori planned pairwise comparisons to identify significant differences between pairs of values. For each species, we used one-way ANOVA to test for significant postfeeding changes in intestinal uptake rates and capacities. Analysis of covariance (ANCOVA), with body mass as the covariate, tested for significant differences in small intestinal and other organ wet and dry masses and enterocyte volume between fasted and fed individuals. We present our results as means ± 1 SE. Results of statistical tests are reported in terms of their F- and P-values, and we designate the level of statistical significance as P ≤ 0.05. We used Statistical Analysis Systems software (SAS, Inc., vers. 6.05, Cary, NC, 1988, unpubl.) to perform all statistical analyses.

RESULTS

Metabolic response.—VO₂ differed significantly among sampling times (pre- and postfeeding) for C. serpentina (F₁₀,₀₂ = 21.0, P ≤ 0.0001), S. odoratus (F₁₀,₀₂ = 7.13, P ≤ 0.0001), and T. scripta (F₀,₂ = 14.9, P ≤ 0.0001). During the four days prior to feeding, metabolic rates (at 30°C) of fasting C. serpentina (n = 3), S. odoratus (n = 4), and T. scripta (n = 4) averaged 0.054 ± 0.002 mL O₂·g⁻¹·h⁻¹, 0.045 ± 0.034 mL O₂·g⁻¹·h⁻¹, and 0.044 ± 0.004 mL O₂·g⁻¹·h⁻¹, respectively. By 24 h postfeeding, VO₂ of C. serpentina had increased significantly (P < 0.0001) to a peak of 0.18 ± 0.01 mL O₂·g⁻¹·h⁻¹, 3.4 times the fasting average (Fig. 1). Chelydra serpentina continued to maintain significantly elevated VO₂ until day 5; thereafter VO₂ did not differ significantly from fasting values. VO₂ of S. odoratus had increased significantly (P < 0.0001) within 24 h and peaked 56 h postfeeding at 0.095 ± 0.006 mL O₂·g⁻¹·h⁻¹, 2.1 times the fasting average. For S. odoratus, VO₂ remained elevated until day 4, after which VO₂ had declined to prefeeding levels (Fig. 1). VO₂ of T. scripta also became significantly elevated by 24 h post-
feeding and peaked at 36 h at 0.12 ± 0.02 mL ⋅ g⁻¹ ⋅ h⁻¹, 2.7 times the fasting average. VO₂ for this turtle remained elevated until day 3; thereafter rates did not differ from fasting values.

The extra energy expended for digestion is termed the specific dynamic action (SDA) of the meal (Kleiber, 1975). The SDA from these meals (calculated as described in fig. 1 of Secor and Diamond, 1997b) equaled 18 ± 1 kJ (22 ± 2% of ingested energy), 3.7 ± 0.4 kJ (17 ± 2% of ingested energy), and 27 ± 3 kJ (21 ± 2% of ingested energy) respectively, for C. serpentina, S. odoratus, and T. scripta (assuming 19.5 J of energy expended per mL O₂ consumed and an energy equivalent of 7.3 kJ per gram wet mass for the beef meals (Gessaman and Nagy, 1988; Holland et al., 1991)).

Functional response.—For fasted and fed turtles of each species, nutrient uptake rates did not differ significantly among the proximal, middle, and distal segments of the small intestine, with the exception of L-lysine and D-glucose at day 1 postfeeding for S. odoratus (P = 0.02) and T. scripta (P = 0.0008), respectively. For C. serpentina and S. odoratus (we did not measure nutrient uptake in T. scripta large intestine), uptake rates of L-proline by the large intestine were half of rates by the small intestine, and there was no measurable active uptake of D-glucose by the large intestine. Hence, we averaged, for each individual and each solute, the uptake values for the three small intestinal segments, and we report separate analyses for the total small intestine and the large intestine.

Upon feeding, C. serpentina small intestine experienced no significant increase in uptake rate of any nutrient (Fig. 2). This turtle’s large intestine also did not experience postfeeding
changes in its uptake of L-proline or D-glucose. There was no active transport of D-glucose by the large intestine for either fasted or fed individuals. For the small intestine, the ratios of L-leucine, L-lysine, and L-proline uptake to D-glucose uptake were significantly greater than 1.0 for both fasted and fed individuals (Fig. 3). For C. serpentina, total uptake capacity of the complete small intestine (summed products of regional uptake rates times regional masses) for L-leucine, L-proline, and D-glucose did not differ significantly between fasting and digesting individuals (Fig. 4).

Sternotherus odoratus also did not exhibit significant differences in small intestinal uptake rates of measured amino acids or D-glucose between fasted and fed treatments (Fig. 2). The large intestine of these turtles likewise experienced no significant difference between treatments in its uptake of L-proline or D-glucose (this turtle species' large intestine, either fasted or fed, also did not actively transport D-glucose). Ratios of L-leucine, L-lysine, and L-proline uptake to D-glucose uptake were also significantly greater than 1.0 for fasted and fed S. odoratus (Fig. 3). The small intestine of fasted and fed S. odoratus likewise experienced no significant differences in its uptake capacity for L-leucine, L-proline, or D-glucose (Fig. 4).

Fasted and fed T. scripta did not exhibit significant differences in small intestinal uptake rates of any measured nutrient (Fig. 2). Ratios of L-leucine and L-proline uptake to D-glucose uptake were also greater than one for fasted and fed turtles; ranging from 7.1 ± 1.8 to 20.2 ± 9.6 (Fig. 3). We detected no significant difference between fasted and fed T. scripta in total intestinal capacity for the transport of L-leucine, L-proline, or D-glucose (Fig. 4).

Morphologic responses.—Enterocyte volume did not differ significantly between fasted (227 ± 43 μm³) and fed (269 ± 32 μm³) C. serpentina. These turtles also did not exhibit any significant differences in small intestinal wet or dry mass (Table 1) nor any differences in the wet and dry masses of the intestinal mucosa and serosa. We found no significant difference between fasted and fed C. serpentina in wet and dry masses of the heart, lungs, liver, stomach, pancreas, large intestine, and kidneys (Table 1).

Feeding also failed to induce significant changes (158 ± 42 μm³ fasted vs 155 ± 43 μm³ fed) in enterocyte volume for S. odoratus. We

<table>
<thead>
<tr>
<th>Organ</th>
<th>Fasted</th>
<th>Fed</th>
<th>ANCOVA P-values</th>
<th>Dry mass</th>
<th>Fasted</th>
<th>Fed</th>
<th>ANCOVA P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheydra serpentina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body mass</td>
<td>77.7 ± 16.4</td>
<td>80.4 ± 23.1</td>
<td>0.92</td>
<td>n = 3</td>
<td>n = 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>0.30 ± 0.07</td>
<td>0.40 ± 0.10</td>
<td>0.08</td>
<td>0.04 ± 0.01</td>
<td>0.05 ± 0.02</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>0.61 ± 0.13</td>
<td>0.70 ± 0.18</td>
<td>0.60</td>
<td>0.08 ± 0.02</td>
<td>0.10 ± 0.01</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>2.01 ± 0.38</td>
<td>2.51 ± 1.08</td>
<td>0.55</td>
<td>0.50 ± 0.06</td>
<td>0.59 ± 0.23</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>1.09 ± 0.14</td>
<td>1.23 ± 0.32</td>
<td>0.36</td>
<td>0.17 ± 0.02</td>
<td>0.17 ± 0.04</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>Pancreas</td>
<td>0.06 ± 0.02</td>
<td>0.08 ± 0.03</td>
<td>0.63</td>
<td>0.014 ± 0.004</td>
<td>0.015 ± 0.005</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>Small intestine</td>
<td>0.94 ± 0.18</td>
<td>1.66 ± 0.62</td>
<td>0.10</td>
<td>0.18 ± 0.03</td>
<td>0.23 ± 0.08</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Large intestine</td>
<td>0.41 ± 0.06</td>
<td>0.72 ± 0.38</td>
<td>0.29</td>
<td>0.049 ± 0.004</td>
<td>0.084 ± 0.046</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Kidneys</td>
<td>0.21 ± 0.04</td>
<td>0.23 ± 0.07</td>
<td>0.53</td>
<td>0.03 ± 0.01</td>
<td>0.04 ± 0.01</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Sternotheras odoratus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body mass</td>
<td>68.7 ± 3.9</td>
<td>65.8 ± 1.7</td>
<td>0.91</td>
<td>n = 4</td>
<td>n = 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>0.27 ± 0.04</td>
<td>0.25 ± 0.02</td>
<td>0.42</td>
<td>0.04 ± 0.01</td>
<td>0.04 ± 0.01</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>0.75 ± 0.07</td>
<td>0.75 ± 0.03</td>
<td>0.85</td>
<td>0.10 ± 0.02</td>
<td>0.10 ± 0.02</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>2.90 ± 0.87</td>
<td>2.47 ± 0.62</td>
<td>0.73</td>
<td>0.95 ± 0.35</td>
<td>0.60 ± 0.22</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>0.26 ± 0.03</td>
<td>0.41 ± 0.01</td>
<td>0.01</td>
<td>0.039 ± 0.005</td>
<td>0.053 ± 0.003</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Pancreas</td>
<td>0.06 ± 0.01</td>
<td>0.04 ± 0.01</td>
<td>0.07</td>
<td>0.012 ± 0.002</td>
<td>0.007 ± 0.002</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Small intestine</td>
<td>0.74 ± 0.13</td>
<td>0.89 ± 0.14</td>
<td>0.45</td>
<td>0.14 ± 0.02</td>
<td>0.19 ± 0.05</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>Large intestine</td>
<td>0.17 ± 0.02</td>
<td>0.28 ± 0.08</td>
<td>0.27</td>
<td>0.027 ± 0.008</td>
<td>0.036 ± 0.009</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Kidneys</td>
<td>0.27 ± 0.05</td>
<td>0.36 ± 0.04</td>
<td>0.21</td>
<td>0.05 ± 0.01</td>
<td>0.06 ± 0.01</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Trachemys scripta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body mass</td>
<td>330 ± 93</td>
<td>320 ± 70</td>
<td>0.94</td>
<td>n = 3</td>
<td>n = 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>0.94 ± 0.28</td>
<td>0.83 ± 0.14</td>
<td>0.59</td>
<td>0.15 ± 0.04</td>
<td>0.13 ± 0.02</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>4.45 ± 1.87</td>
<td>3.64 ± 1.10</td>
<td>0.46</td>
<td>0.44 ± 0.19</td>
<td>0.40 ± 0.11</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>11.11 ± 3.16</td>
<td>9.96 ± 2.21</td>
<td>0.25</td>
<td>3.08 ± 1.07</td>
<td>2.49 ± 0.76</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>4.51 ± 2.22</td>
<td>4.47 ± 0.81</td>
<td>0.96</td>
<td>0.70 ± 0.33</td>
<td>0.72 ± 0.15</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>Pancreas</td>
<td>0.59 ± 0.11</td>
<td>0.38 ± 0.08</td>
<td>0.97</td>
<td>0.066 ± 0.023</td>
<td>0.068 ± 0.014</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>Small intestine</td>
<td>6.31 ± 2.37</td>
<td>10.38 ± 2.03</td>
<td>0.09</td>
<td>1.30 ± 0.57</td>
<td>2.01 ± 0.54</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Large intestine</td>
<td>2.34 ± 0.93</td>
<td>2.56 ± 0.55</td>
<td>0.65</td>
<td>0.31 ± 0.13</td>
<td>0.34 ± 0.08</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>Kidneys</td>
<td>0.85 ± 0.21</td>
<td>0.86 ± 0.16</td>
<td>0.83</td>
<td>0.41 ± 0.04</td>
<td>0.14 ± 0.02</td>
<td>0.92</td>
<td></td>
</tr>
</tbody>
</table>

Also observed no significant differences in wet and dry masses of the small intestine of *S. odoratus* between fasted and fed individuals (Table 1). Similarly, wet and dry masses of the mucosal and serosal components of the small intestine experienced no significant responses to feeding. Wet and dry masses of the heart, lungs, liver, pancreas, large intestine, and kidneys did not significantly differ between fasted and fed *S. odoratus* (Table 1). We did observe a significant greater wet and dry mass (59% and 42% increase, respectively) of the stomach (*P* < 0.035) for fed compared to fasted *S. odoratus*.

Fasted and fed *T. scripta* exhibited no significant difference in wet and dry masses of the small intestine nor in either the mucosal or serosal components. Wet and dry masses of the heart, lungs, liver, stomach, pancreas, large intestine, and kidneys likewise did not significantly differ between fasted and fed turtles (Table 1).

Discussion

In this study, *C. serpentina*, *S. odoratus*, and *T. scripta* exhibited no postfeeding changes in intestinal nutrient uptake rates or in the mass of most organs measured. Feeding did induce modest but statistically significant increases in oxygen consumption rates for all three species and for *S. odoratus* an increase in stomach mass. Drawing on other studies on digestive response, reptile metabolism, and turtle ecology, we shall discuss in turn the metabolic, functional, and
morphologic responses to feeding by juvenile *C. serpentina*, adult *S. odoratus*, and subadult *T. scripta*. We shall conclude by addressing three questions regarding the adaptive significance of turtle digestive physiology.

Metabolic response.—VO₂ of fasting juvenile *C. serpentina*, adult *S. odoratus*, and subadult *T. scripta* did not differ significantly from each other and were, respectively, 42%, 61%, and 56% of predicted values based on a generalized regression equation for reptiles at 30°C (note that this equation of Bennett and Dawson (1976) includes only three turtle species, one being *T. scripta*, of 44 reptile species analyzed). Following feeding, these turtles experienced the common phenomenon of an increase in metabolic rate (Jobling, 1981; Secor and Diamond, 1997b). Peak VO₂ and SDA (normalized to body mass) were significantly (Ps < 0.005) greater for *C. serpentina* than for either *T. scripta* or *S. odoratus*, apparently a result of the relatively larger meals consumed by *C. serpentina* in our experiments (11.3% vs 5.2% and 5.0%). We have previously observed peak VO₂ and SDA to increase with relative meal size for the python *Python molurus* (Secor and Diamond, 1997b).

The 110%, 170%, and 240% postprandial increases in VO₂ by *S. odoratus*, *T. scripta*, and *C. serpentina*, respectively, are within the range of increases experienced by digesting fish, amphibian, reptile, and bird species which feed relatively frequently (Jobling, 1981; Janes and Chappell, 1995; Secor and Diamond, 1996; see Fig. 5). Similarly, the turtle *Testudo denticulata* increases its metabolic rate by 100% to 280% following the consumption of bananas equaling 3.3–4.7% of body mass (Benedict, 1932); the metabolic rate of digesting juvenile painted turtles (*Chrysemys picta*) averages 220% higher than rates during fasting (Siewert et al., 1988); and the omnivorous turtle (*Kinixys speki*) exhibited a 160%, 185%, and a 200% increase in VO₂ during the digestion of millipedes, leaves, and fungi, respectively (Hailey, 1998). The magnitudes of responses of all six of these turtle species are small compared to the increase in VO₂ during digestion by infrequently feeding amphibians and reptiles (Fig. 5). For example, sit-and-wait foraging *P. molurus* increases VO₂ by 410% and 1000%, respectively, following the ingestion of meals 5% and 15% of body mass (Secor and Diamond, 1997b). Likewise, the monitor lizard *Varanus albigularis*, which fasts for many months in the wild, increases VO₂ 900% during the digestion of meals 10% of body mass (Secor and Phillips, 1997).

SDA expressed as a percentage of ingested energy is a useful standard for comparing the cost of digestion among taxa (Jobling and Davies, 1980). These percentages for *S. odoratus* (17%), *T. scripta* (21%), and *C. serpentina* (22%), which do not statistically differ, are within or near the range of values (5–18%) for frequently feeding invertebrate and vertebrate species studied and lower than the values of 26–37% for several species of infrequently feeding snakes (Jobling, 1981; Secor and Diamond, 1997b).

Functional response.—For each nutrient measured, we found no interspecific differences in intestinal uptake rates for fasted or digesting turtles. In fact, our laboratory has measured similar intestinal uptake rates (nmol es · min⁻¹ · mg⁻¹) of amino acids and D-glucose from several species of fasted and fed snakes, lizards, frogs, salamanders, and the turtle *Terrapene carolina* (Karasov et al., 1985; Secor et al., 1994; Secor and Diamond, 1995; S. Secor, L. Kats, and J. Diamond, unpubl. obs.). The large intestine...
of fasted and fed *C. serpentina* and *S. odoratus* did not actively transport D-glucose, whereas we have observed the active transport of D-glucose by the large intestine of fasted and fed snakes (*Python malarus* and *Boa constrictor*) and anurans (*Bufo alvarius*, *Rana catesbeiana*, *Ceratophyrs ornata*, and *Pseudophallus adspersus*; Secor and Diamond, 1995, 1996; unpubl. obs.).

We found that, when we normalize uptake capacities to body mass (dividing by body mass) for each species, normalized values for fasted and fed turtles are within the range of normalized uptake capacities of other ectotherms, including trout (*Salmo gairdneri*), leopard frogs (*Rana pipiens*), bullfrogs (*R. catesbeiana*), and frequently feeding species of snakes including *Coluber constrictor*, *Masticophis flagellum*, and *Pituophis melanoleucus* (Buddington and Hilton, 1987; Buddington et al., 1991; unpubl. obs.). In contrast, normalized capacities are much higher for endotherms and for recently fed infrequently feeding snakes, such as sidewinders (*Crotalus cerastes*), Burmese pythons, and boa constrictors (*B. constrictor*; Secor et al., 1994; Secor and Diamond, 1995; unpubl. obs.). Normalized capacities for either L-leucine or L-proline uptake did not differ among the three species, whereas normalized D-glucose uptake capacities for *S. odoratus* were significantly (planned pairwise comparisons, *P* < 0.043) greater than those of the other two turtle species.

Carnivores and omnivores transport amino acids at faster rates than they transport glucose across their intestinal brush-border membrane, whereas herbivores show the opposite relationship (Karasov and Diamond, 1988). The ratios of amino acid uptake rates to D-glucose uptake rates were much greater than 1.0 (5–38) for all three turtle species, regardless of digestive state (Fig. 3). In light of their omnivorous diet, the propensity of carnivores to transport amino acids at faster rates than glucose is presumably an adaptation to diets that are high in protein and low in carbohydrate.

Morphologic response.—None of the three turtle species experienced any significant increase in small intestinal wet mass following feeding. We have similarly observed a lack of significant postfeeding increase in small intestinal mass among frequently feeding snake and frog species (Secor and Diamond, 1994, 1996). In contrast, small intestinal mass increases two to fourfold following feeding for infrequently feeding snake and frog species (Secor and Diamond, 1994, 1996). The morphology of turtle enterocytes did not respond to feeding, whereas for infrequently feeding *C. cerastes* and *P. malarus* enterocyte dimensions increases significantly following feeding (Secor et al., 1994; Secor and Diamond, 1995). Feeding induced very limited mass change of other organs for our three turtle species; only *S. odoratus* stomach wet and dry masses were significantly greater in fed individuals. In an interspecific comparison of organ mass (normalized to body mass), we found in planned pairwise comparisons that *S. odoratus* possesses relatively larger kidneys (*P* < 0.006), smaller stomachs (*P* < 0.0001), and smaller large intestines (*P* < 0.01) than the other two species. *Trachemys scripta* was found to possess relatively larger small intestines (*P* < 0.02) and smaller hearts (*P* < 0.007) than the other two turtle species.

Adaptive significance.—Three questions about the adaptive significance of the postfeeding responses of *C. serpentina*, *S. odoratus*, *T. scripta*, and other turtle species suggest themselves. First, how do we interpret the overall postfeeding responses of these turtles with respect to their natural feeding habits? *Chelydra serpentina*, *S. odoratus*, and *T. scripta* feed frequently in the wild, as evidenced by the high percentage (70–100%) of wild-caught individuals with food within their guts and by the appearance of separate meals within the gut (Lagler, 1943; Punzo, 1975; Parmenter, 1980). All three species as juveniles and adults actively search the bottom of their aquatic habitat for food (plants, invertebrates, and vertebrates), a technique described by Ernst (1986) for *S. odoratus* as a "peer and probe method of food detection." In view of their high frequency of feeding and constant bouts of digestion, we predicted that these species would maintain intestinal performance following digestion and therefore exhibit no significant change in intestinal function or morphology after feeding. For most variables examined, our prediction held true; intestinal function and morphology and organ masses did not respond to feeding following an extended fast. Therefore we conclude that, like other frequent feeders, *C. serpentina*, *S. odoratus*, and *T. scripta* maintain the readiness of their digestive machinery even when not feeding.

Second, can we suggest cases in nature where gut performance is nevertheless likely to be regulated in turtle species? Temperate-zone populations of turtles generally hibernate during the winter in response to low environmental temperatures (Ernst et al., 1994). Associated with lower body temperatures and digestive quiescence, perhaps the functional capacity of turtle guts will be found to decrease during hibernation, as observed for lizards (Latif et al., 1967;
Karosov et al., 1985). Alternatively, their intestines may only atrophy while retaining nutrient transporter activities, as observed for hibernating ground squirrels (Carey, 1990). In either case, upon the turtle’s arousal from hibernation and subsequent feeding, its gut may up-regulate function and/or morphology to levels maintained throughout the active season.

Although most turtle species appear to feed relatively frequently, a few species are documented to fast periodically without hibernating (Ernst et al., 1994). Most notable is the herbivorous desert tortoise (Gopherus agassizii) of North America that commonly fasts for a month during the active season, spans only 0.3% of the year feeding, and may experience 20-fold shifts in food consumption from one part of the active season to the next (Nagy and Medica, 1986). If up- and down-regulation of gut performance has evolved in response to large changes in digestive demand within turtles, G. agassizii is a likely candidate for such responses.

Third, are ontogenetic shifts in diet or meal size associated with corresponding shifts in gut function? Several turtle species (Pseudemys concinna, Terrapene carolina, Emydura krefftii), including T. scripta, are known to shift from a primarily carnivorous diet as juveniles to a largely herbivorous diet as adults (Georges, 1982; Ernst et al., 1994). For the marine fish Cebidichthys violaceus, which as young are carnivorous and become increasingly herbivorous with size, intestinal transport rates of the amino acid L-proline decline with body size in parallel with the decrease of dietary protein intake (Buddington et al., 1987). A similar ontogenetic shift in intestinal nutrient transport may also occur for turtles that change diet with age.

In addition, C. serpentina undergoes an ontogenetic shift in foraging tactics and meal size (Ernst et al., 1994). Very young C. serpentina (as in this study) actively forage and feed on small prey, whereas adults will also in ambush to seize prey as large as ducks and muskrats (Lagger 1943; Ernst et al., 1994). Perhaps, very large C. serpentina will be found to demonstrate greater magnitudes of digestive regulation than small young individuals, as an evolutionary response to feeding less often on larger meals.

This study on C. serpentina, S. odoratus, and T. scripta has complemented our other studies on frequently feeding snake and anuran species, all of which have demonstrated a general lack of postfeeding responses (Fig. 5). In contrast, amphibian and reptile species that naturally experience long bouts of digestive quiescence exhibit significant postfeeding changes in gut function and morphology (Fig. 5). Hence we believe that this study supports our adaptive hypothesis on the correlated evolution of feeding ecology and digestive physiology, that frequently digesting organisms maintain gut performance whereas infrequently digesting species up- and down-regulate the gut in response to digestive demand (Searc et al., 1994; Secor and Diamond, 1995). Studies of other taxa, such as the infrequently feeding tortoise Gopherus, will provide further tests of this hypothesis.

Acknowledgments

We wish to extend our appreciation to R. Abdelmalik, I. Chaudhary, J. Isaacs, K. Kim, R. Nagle, S. Sampogna, S. Szabo, R. Torres, F. Wayland, and especially C. Slotnick for their assistance in the experiments. Experimental protocols and animal care were approved by the University of California, Los Angeles Chancellor’s Animal Research Committee. Support of this project was provided by the National Institutes of Health NRSF fellowship DK 08878 and by National Institutes of Health grants GM 14772 and DK 42973 (to the UCLA Center for Ulcer Research and Education).

Literature Cited

CAREY, H. V. 1990. Seasonal changes in mucosal structure and function in ground squirrel intestine. Ibid. 259:R385–R392.

GEORGES, A. 1982. Diet of the Australian freshwater

