Reproductive and Combat Behavior of the Mexican Kingsnake, Lampropeltis mexicana

STEPHEN M. SECOR, Department of Biology, University of California, Los Angeles, California 90024, USA.

Descriptions of reproductive and combat bouts exist for members of the snake families Boidae (Barker et al., 1979), Colubridae (Brocke et al., 1976; Murphy et al., 1978), Elapidae (Leloup, 1964; Andren, 1981; Akester, 1983; Gillingham et al., 1983). The more recent of these studies have adopted the terminology and techniques of Gillingham et al. (1977) and Gillingham (1979) to describe and analyze the various reproductive behaviors. Similarly, the actions performed during combat have been described using the methods of Carpenter and Gillingham (1977) and Gillingham (1980). Applying standardized techniques to analyze reproductive and combat bouts allows meaningful comparisons among species. This study documents reproductive and combat bouts by Mexican kingsnakes, Lampropeltis mexicana, and compares them to similar data on other species.

For this study twelve adult, six males (x = 66.4 cm SVL, 79.5 cm TL, and 137.2 g) and six females (x = 77.5 cm SVL, 89.7 cm TL, and 269.0 g), L. mexicana were used. These snakes were maintained on a weekly diet of mice and juvenile rats and were exposed to a 2–3 month period of artificial hibernation prior to pairing.

To initiate courtship or combat, one snake was introduced into the cage of another (61 x 45.7 x 30.5 cm) or both were placed in a 75.7 liter aquarium. Courtship and combat bouts were recorded on video cassette and later replayed for description and analysis of behaviors. Sixteen courtship bouts, nine resulting in copulation, were taped during the spring of 1983 and 1984 and one combat bout was recorded during the spring of 1984.

The motor patterns performed by courting male Lampropeltis mexicana were: Touch (TO), Mount (MT), Chase-Mount (CM), Dorsal-Advance Movement (DM), Forward-Body Advance Movement (FBJ), WRithe (WR), Tail-Search Copulatory Attempt (TSCA), and Intromission (IN). The definitions of these motor patterns are given in Gillingham (1979) and Secor (1987). The combat bout was described using the terminology (boldface in text) given by Carpenter and Gillingham (1977) and Gillingham (1980).

The number, mean duration, range of duration, and relative frequency of each motor pattern performed by male L. mexicana, pooled from all sixteen courtship bouts, are presented in Table 1. The following describes the general sequence of motor patterns performed during each of the three courtship phases developed by Gillingham et al. (1977).

The Tactile-Chase Phase (Phase I) began with the male’s first courting contact (TO) with the female and ended with his first Tail Search Copulatory Attempt (TSCA) and averaged 2.2 min (range = 0.6–4.5, SD = 1.0, N = 12). When first paired, the male typically moved around the cage performing repeated volleys of tongue flicking. After approaching the female he tongue-flicked her sides and dorsum and initiated contact (TO). He then placed his chin upon her dorsum (MT) and moved towards her head (DM), while constantly tongue-flicking (S = 1.7 flicks/s, SD = 0.30, N = 46) (Fig. 1A). In the several instances that the female moved away from the male’s advances, he was still able to maintain dorsal contact (CM). After obtaining dorsal alignment, he began a series of DM followed by WR. Occasionally, he performed a FBJ (x = 1.4 jerks/s, SD = 0.17, N = 53) just prior to WR. The tackle-chase phase ended when the male was able to align the posterior portion of his body and tail with that of the female and perform a TSCA.

The Tactile-Alignment Phase (Phase II) began with the male’s first TSCA and ended with IN and averaged 12.7 min (range = 5.1–57.4, SD = 18.3, N = 9). Throughout this phase the male maintained most of his body in dorsal and lateral contact with the female. The predominant sequence of motor patterns was WR followed by TSCA and a subsequent rest period (mean duration = 30.7 s, SD = 24.0, N = 97). In the longer Phase II bouts, these motor patterns were repeated repeatedly and at many times either DM or FBJ was performed immediately before WR.

The male started each TSCA by rapidly undulating his tail alongside the female’s, followed by side to side twisting actions which would eventually juxtapose their vents (Fig. 1B). In two bouts, the first TSCA resulted in IN and for the others the male performed from 3 to 35 TSCAs prior to IN (x = 8.3, SD = 10.0; for all bouts).

The Intromission and Coitus Phase (Phase III), the duration of copulation, averaged 9.0 min (range = 5.2–14.7, SD = 3.4, N = 9). Immediately prior to each IN, the female raised her tail 45° and gaped her cloaca. Neither snake moved during 74.8% of the time spent in Phase III (Fig. 1C). For the remaining time, male actions included sliding back, regaining dorsal position, and waving the tail back and forth (with and without pushing at the cloaca); while the female moved her entire body or just her head. Following seven terminations of coitus either one or both individuals raised their tails 30–90° above the substrate for 4–214 s (x = 64.9, SD = 6).

In combat, following initial contact, male G (pre-
dominantly grey in coloration; 66.5 cm SVL, 83.5 cm TL, 162.0 g) Aligned himself alongside male R (red coloration; 67.0 cm SVL, 80.5 cm TL, 162.7 g) and proceeded to mount him (Touch Mount). As G advanced along R’s dorsum, R responded by lifting parts of his body that were in contact with G (Push-Bridge). Immediately after, R moved out from under G’s right side, raised his head and neck (bent in an S-shaped loop) above G and dropped it down on G’s head and anterior body (Dorsal Pin). Male G simultaneously Push-Bridged against R, then moved to R’s right side and reciprocated with a Dorsal Pin against R (Fig. 2). This exchange of Dorsal Pins and Push-Bridges continued throughout the bout resulting in their entire bodies becoming Entwined. Occasionally, one male would hold his head and neck above the other’s head prior to lowering it down (Hover).

One min 50 s into the bout, G bit R about ¾ down R’s body. After making five side to side twisting motions with his head, G released R. Five s later, R bit G for a duration of five s during which he performed 15 twisting motions. Three min, 14 s following contact, G Retreated from R, with R in pursuit. Up to that point there were 62 exchanges of dorsal head and neck raising, occurring as rapidly as two/s. Just prior to separation, Dorsal Pin exchanges occurred so frequently that the males were spiralling in a cork-screw fashion. Prior to G’s Retreat, male R held the dorsal position 52.4% of the time, while G held it the anterior portion of his trunk and tail with that of the female and the female’s receptiveness to the male’s advances. The females gaping their cloaca prior to IN undoubtedly conveys their receptivity to mating and possibly assists in hemipenial insertion. Cloacal gaping is a widespread phenomenon among mating snakes, having been observed in boids (Davis, 1936; Barker et al., 1979), colubrids (Noble, 1937; Murphy et al., 1978; Gillingham, 1979), and viperids (Armstrong and Murphy, 1979; Gillingham et al., 1983).

During copulation, male and female L. mexicana are usually immobile, unlike L. getulus holbrooki in which either or both sexes are active during 92.3% of Phase III (Secor, 1987). The relative time spent in motion during Phase III differs significantly between these two species of Lampropeltis (z = 3.72, P < 0.001). Copulatory movement, especially by the male, has also been observed for many other species and possibly functions to maintain body contact and to facilitate sperm passage. The functional significance of tail raising, which has also been noted for Elaphe (Gillingham, 1979), L. getulus holbrooki (Secor, 1987), and L. triangulum (Gillingham et al., 1977), is not known. For the male, it may facilitate hemipenial retraction and for the female it may assist in the passage of seminal fluid further into the oviducts.

Table 1. Courtship motor patterns of male Lampropeltis mexicana. Data are pooled from sixteen courtship bouts.

<table>
<thead>
<tr>
<th>Motor pattern</th>
<th>N</th>
<th>Duration (s) ± (SD)</th>
<th>Range (s)</th>
<th>Relative frequency</th>
<th>Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touch</td>
<td>9</td>
<td>3.0 (1.3)</td>
<td>2–6</td>
<td>2.3</td>
<td>I</td>
</tr>
<tr>
<td>Mount</td>
<td>9</td>
<td>3.4 (1.3)</td>
<td>2–6</td>
<td>2.3</td>
<td>I</td>
</tr>
<tr>
<td>Chase-mount</td>
<td>5</td>
<td>9.0 (6.2)</td>
<td>2–19</td>
<td>1.3</td>
<td>I</td>
</tr>
<tr>
<td>Dorsal-advance movement</td>
<td>68</td>
<td>7.4 (4.1)</td>
<td>2–19</td>
<td>17.5</td>
<td>I, II</td>
</tr>
<tr>
<td>Forward-body jerk</td>
<td>54</td>
<td>30.1 (39.3)</td>
<td>5–202</td>
<td>13.9</td>
<td>I, II</td>
</tr>
<tr>
<td>Writhe</td>
<td>145</td>
<td>25.9 (22.5)</td>
<td>2–129</td>
<td>37.3</td>
<td>I, II</td>
</tr>
<tr>
<td>TSCA</td>
<td>89</td>
<td>12.7 (5.8)</td>
<td>3–32</td>
<td>22.9</td>
<td>II</td>
</tr>
<tr>
<td>Intromission</td>
<td>9</td>
<td>487.8 (250.5)</td>
<td>69–884</td>
<td>2.5</td>
<td>III</td>
</tr>
</tbody>
</table>

NOTES

During courtship by male Coluber (Fitch, 1963), Elaphe (Gillingham, 1979), Lampropeltis (Gillingham et al., 1977; Murphy et al., 1978; Secor, 1987), and Pituophis (Perkins, 1943). Lampropeltis mexicana, like other Lampropeltis, did not perform caudocephalic waves during courtship, a motor pattern common to other colubrid genera (Secor, 1987).

The number of TSCAs performed prior to IN is contingent upon the male’s ability to align the posterior portion of his trunk and tail with that of the female and the female’s receptiveness to the male’s advances. The females gaping their cloaca prior to IN undoubtedly conveys their receptivity to mating and possibly assists in hemipenial insertion. Cloacal gaping is a widespread phenomenon among mating snakes, having been observed in boids (Davis, 1936; Barker et al., 1979), colubrids (Noble, 1937; Murphy et al., 1978; Gillingham, 1979), and viperids (Armstrong and Murphy, 1979; Gillingham et al., 1983).

TABLE 1. Courtship motor patterns of male Lampropeltis mexicana. Data are pooled from sixteen courtship bouts.
phy et al., 1978), *L. calligaster* (Carpenter, 1984), *L. getulus* (Carpenter and Gillingham, 1977; Clark et al., 1984), *L. pyromelana* (Martin, 1976), and *L. triangulum* (Shaw, 1951). Combat biting also occurs within the colubrid genera *Drymarchon* (Waide and Thomas, 1984), *Elaphe* (Brecke et al., 1976), *Masticophis* (Bennion and Parker, 1976; Hammerson, 1978), *Pituophis* (Shaw, 1951), and *Sonora* (Kroll, 1971). Combat biting by *L. mexicana* and other colubrids differs noticeably from courtship biting. Combatant males aggressively twist their heads from side to side while holding on to the opponent's body. Courtship biting, documented for *L. calligaster* (Tryon and Carl, 1980), *L. getulus* (Lewke, 1979; Secor, 1987) and other colubrid genera (Secor, 1987), is generally longer (for *L. getulus holbrooki* $\bar{x} = 47.1$ s; Secor, 1987), and involves just the male grasping the female in his jaws. Combat biting is undoubtedly an aggressive action used to establish dominance or as a response to an opponent's advances. Courtship biting may function to restrain a fleeing female or to induce sexual receptivity (Gillingham, 1974).

In the combat bout reported here the males were...
FIG. 2. The exchange of dorsal head and neck positioning during a 1.5 s sequence of combat between two male *Lampropeltis mexicana* (see text).
evenly matched in size, and for the first few minutes of combat neither was obviously dominant. During that period, each maintained superior position for about 50% of the time and each had bitten the other once. Following the initial retreat by G, R, the establishment of combat neither was obviously dominant. During that period, each maintained superior position most of the time while numbers of bites by each individual were essentially equal. Carpenter and Gillingham (1977) and Clark et al. (1984) also found that dominant males held the superior position over opponents for the majority of the duration of combat bouts.

Acknowledgments.—I thank Steven Osborne and Stuart Tenneyson for allowing me to videotape the social behaviors of their snakes. The comments made by Jeffrey Howland, Claudia Luke, Laurie Vitt, and two anonymous reviewers on earlier versions of this manuscript greatly improved its quality. In addition, I am grateful to Charles C. Carpenter and the Department of Zoology, University of Oklahoma, for use of video equipment.

LITERATURE CITED

Accepted: 12 June 1989.